
COURSE HANDOUT

Course Code ACSC13

Course Name Design and Analysis of Algorithms

Class / Semester IV SEM

Section A-SECTION

Name of the Department CSE-CYBER SECURITY

Employee ID IARE11023

Employee Name Dr K RAJENDRA PRASAD

Topic Covered Quick Sort

Course Outcome/s Analysis of quicksort for unsorted elements

Handout Number 18

Date 19 April, 2023

Content about topic covered: Quicksort

In Quicksort, the division in to two sub arrays is made so that the sorted sub arrays need not to be
merged later. This is accomplished by rearranging the elements in a[1:n] such that a[i] ≤ a[j] for all i
between 1 and m and for all j between m+1 and n for some m, 1≤m≤n.

Thus the elements in a[1:m] and a[m+1:n] can be independently sorted. No merge is needed.

The rearrangement of the elements is accomplished by picking some element of a[], say t = a[s], and
then re ordering the other elements so that all the elements appearing before t in a[1:n] are less than or
equal to t and all elements appearing after t are greater than or equal to t. This rearranging is called
partitioning.

Analysis of Quicksort:

Assume that the partitioning element v has an equal probability of being the ith smallest element, 1 ≤ i
≤ p-m in a[m:p-1].
The average time complexity of Quicksort CA(n) is described as

 C୅(n) = n + 1 +
ଵ

௡
 ∑ [C୅(k − 1) + C୅(n − k)]ଵஸ௞ஸ௡ … (1)

N+1 is the number of element comparisons required by partition on its first call.

C୅(0) = C୅(1) = 0

Multiplying both sides of eq. (1) by n,

n C୅(n) = n(n + 1) + 2[C୅(0) + C୅(1) + ⋯ + C୅(𝑛 − 1)] … (2)

n by ‘n-1’ in eq.(2)

(n − 1) C୅(n − 1) = (n − 1)n + 2[C୅(0) + C୅(1) + ⋯ + C୅(𝑛 − 2)] … (3)

Subtracting eq. (3) from eq. (2)

n C୅(n) − (n − 1) C୅(n − 1) = 2n + 2C୅(𝑛 − 1)

n C୅(n) = 2n + 2C୅(𝑛 − 1) + (n − 1) C୅(n − 1)

n C୅(n) = 2n + (n + 1) C୅(n − 1)

Dividing both sides by n(n+1)

n C୅(n)

n(n + 1)
=

2n

n(n + 1)
+

(n + 1) C୅(n − 1)

n(n + 1)

⟹
 C୅(n)

(n + 1)
=

 C୅(n − 1)

n
+

2

n + 1

⟹
 C୅(n)

(n + 1)
=

 C୅(n − 2)

n − 1
+

2

n
+

2

n + 1

⟹
 C୅(n)

(n + 1)
=

 C୅(n − 3)

n − 2
+

2

n − 1
+

2

n
+

2

n + 1

⋮

⟹
 C୅(n)

(n + 1)
=

 C୅(1)

2
+

2

3
+

2

4
+ ⋯ +

2

n + 1

⟹
 C୅(n)

(n + 1)
=

 C୅(1)

2
+ 2 ෍

1

𝑘
ଷஸ௞ஸ௡ାଵ

⟹
 C୅(n)

(n + 1)
= 2 ෍

1

𝑘
ଷஸ௞ஸ௡ାଵ

Since CA(1) = 0

∑
ଵ

௞ଷஸ௞ஸ௡ାଵ ≤ ∫
ଵ

௫

௡ାଵ

ଶ
𝑑𝑥 = log(𝑛 + 1) − log 2

 C୅(n)

(n + 1)
≤ 2 [log(𝑛 + 1) − log 2]

 C୅(n) ≤ 2 (𝑛 + 1)[log(𝑛 + 1) − log 2]

 C୅(n) = 𝑂(𝑛 log 𝑛).

